Literals, Temps, Locals, Params and Attributes.

An exploration of some of the "data holders" used to store and manipulate numbers.

Literals
A"literal" is a fixed number, for example, 0, 24, -16

As SimAntics is based around 16-bit values, values can range from binary 0000000000000000
to binary 1111111111111111 or hex 0x0000 to hex OxFFFF.

However, as SimAntics uses signed integer values, these represent the decimal whole numbers
+32,767 to -32,768.

Temps

Literals on their own are not very useful, typically we want to be able to perform maths on
numbers, so we need somewhere to store the intermediate calculations and the result.

In higher level languages than SimAntics we can write things like "x =10 * 3/4" to calculate
three-quarters of 10 and put the answer into something we're calling "x", but in SimAntics this
needs to be a sequence of operations.

SimAntics provides "data holders" to store thingsin - what most languages call "variables". One
type of data holder is the "temporary values", of which there are eight, commonly referred to as
"Temp 0" thru "Temp 7" (or more succinctly as "T0" thru "T7")

So,to perform the above calculation we would need to assign the literal value 10 into "Temp 0"
and then manipulate "Temp 0", first multiplying it by 3 then dividing by 4.

PI1SE: Behaviour Function Editor

Filename Simple Calculation Format |0xB8007 v| 1

0x0 (0): [prim 0x0002] Expression {Temp 0x0000 := Literal Ox0004)
true: 1 false: FFFC

Ox1 (1): [prim 0x0002] Expression {Temp 0x0000 *= Literal 0x0003)
true: 2 false: FFFC

0x2 (2): [prim 0x0002] Expression (Temp 0x0000 /= Literal 0x0004)
true: FFFD false: FFFC

=1+

Whole Numbers Only Please

So, what’s in TO after the last line is executed?

Itis NOT “seven and a half” as we’re dealing with whole numbers. 10 times 3 is 30, and 4 goes
into 30 seven times (remainder two), so the value in TO is 7

Note, if we perform the calculation the other way around (10 divided by 4times 3) the valuein TO

will be 6
In general, you should always multiply before dividing.

But like all rules, we need to understand the exceptions.

Let’s change the code to calculate 75% of a value instead of three-quarters.

P1SE: Behaviour Function Editor

Filename Simple Calculation

Format 1

0x0 (0): [prim 0x0002] Expression (Temp 0x0000 := Literal Ox0004)

true: 1 false: FFFC

0x1 (1): [prim 0x0002] Expression (Temp 0x0000 *= Literal 0x004B)

0x2 (2): [prim 0x0002] Bxpression (Temp 0x0000 /= Literal 0x0064)

o
true: 2 false: FFFC [
J

true: FFFD false: FFFC

(Aren’t hex numbers annoying! 0x0048 is 75 and 0x0064 is 100)

10 times 75 is 750, and 750 divided to 100 is 7

Overflow Issues
So, what’s 75% of 4807

Filename Simple Calculation

Format Ti

0x0 (0): [prim 0x0002] Expression (Temp 0x0000 := Literal Ox01E0)

true: 1 false: FFFC

Ox1 (1): [prim 0x0002] Expression (Temp 0x0000 *= Literal 0x004B6)

true: 2 false: FFFC

0x2 (2): [prim 0x0002] Expression (Temp 0x0000 /= Literal 0x0064)

=1

true: FFFD false: FFFC

With the code above, it is NOT 360 - it will either cause an error or be -295

WTF?

480times75is 36,000 whichinhexis 0x8CAO or 1000110010100000 binary, but that first 1 tells
SimAntics that this is the NEGATIVE number -29,536 and that divided by 100 is -295

So perhaps we should always divide first =480/ 100 * 75 = 300 (only 60 out!)

Butthen10/100*75=0

You need to be aware of what range of numbers you are expecting as inputs and adapt your

code accordingly.

A reasonable way to calculate percentages is “divide by 10, multiply by percent, divide by 10”.

480/10*75/10=360

10/10*75/10=7

Temps Vs Locals

Temporary data holders are just that — temporary. You should not use them for anything other
than “quick and dirty” variables. They are shared by everything in SimAntics, and anything can
put a value intothem. Some primitives use them to receive values, for example, the animation
primitives assume the Sim’s “handedness” is indicated by the value in T3. Some primitives
return values in them, for example, the Dialog (0x0024) primitive uses a temp to return the
notification ID. Most global and semi-global BHAVs stomp all over them!

Filename Simple Calculation Format |0x8007 - | Tree

0x0 {0): [prim 0x0002] BExpression (Temp 0x0000 := Literal 0x01ED)

true: 1 false: FFFC

0x1 {1): [prim 0x0002] Bxpression (Temp 0x0000 *= Literal 0x004B)

true: false: FFFC

Ira

0x2 (2): [prim 0x0002] Bxpression (Temp 0x0000 /= Literal 0x0064)
true: 3 false: FFFC

03 (3): [global 0x016C] Age - Am I an Adult? ()

true: false:

14=

04 (4): [prim 0x0002] Bxpression (Temp 0x0001 := Temp 0x0000)

14=

true: FFFD false: FFFC

T1 willNOT be whatever we calculated in TO! (It will be the life-stage code for the Sim, as “Age -
Am | an Adult” uses TO itself).

For anything other than very short-term storage, you should use a local data holder. You can
have as manylocalsas you need - | have a BHAV with 27 locals. They are commonly referred to
as "Local 0", “Local 1”,“Local 2”, etc (or more succinctly as "L0", “L1”, “L2”, etc)

Filename Simple Calculation Format |(0x3007 -~ | Tree’

0x0 {0): [prim 0x0002] Expression {Local Ox0000 := Literal 0x01EQ)

true: 1 false: FFFC

0x1 (1): [prim 0x0002] Expression (Local 0x0000 *= Literal 0x004B) :l

true: 2 false: FFFC [
0x2 (2): [prim 0x0002] BExpression (Local 0x0000 f= Literal 0x0064) :l

true: 3 false: FFFC [
0%3 (3): [alobal 0x016C] Age - Am I an Adult? () :l

true: 4 false: 4
0% (4): [prim 0x0002] Bxpression (Local 0x0001 := Local 0x0000) :.

true: FFFD false: FFFC

L1 will be whatever we calculated and stored into LO — even if “Age — Am | an Adult?” used LO
internally instead of TO to do its own calculations.

Stack Number out of Range ‘gotcha’.

The most important thing about locals is we need to tell SimAntics how many we need in the
BHAV they are used in, via the “Local Var Count” box.

Format |0x8007 v| Tree Type 0Ox00 HeaderFlag 0x00 Tree Version 000000006 Cache flags 0x00

Commit File Arg Count 0x00 Local Var Count 0x02

L false: FFFC -]

:| Instruction Settings
! false: FFFC E OpCode: 0Ox016C F | wview BHAY ModeVersion: 0x00

:l True Target: |EI:(EIEIIII4 vl False Target: |ElxIIIEIIII4 L%
i false: FFFC E ———— —

:I Operands: 00 00 OO0 00 00 OO 00 OO

00 00 OO 00 00 OO 00 00 9 x

i falze: 4 il il el el il ninl il il

ﬂ [global 0x016C] Age - Am I an Adult? (no args)
FFD false: FFFC 5 E

As locals start at “Local 0”, a count of two means we can use LO and L1, but NOT L2 (or higher).

Failing to set Local Var Count to “one more” than the highest local you use will result in the
“Stack Number out of Range” error message.

Why Stack Numbers?

Stack numbers, stack objects, wtf is a “stack”?
OK, stick with me.

We’re at our desk about to start some new calculations. We have a scrap piece of paper for our
“working outs” and a new ream of paper for our “good” calculations. We place a blank piece of
paper in front of us and start calculating ... LO=X,L1=Y,L2= L0 + 2 times X (2 times Xwe do on
the scrap), but now we need to find Z — which is a whole different set of calculations. So, we
take another blank piece of paper and place it on top of our sheet with our Xand Y work on.

We can write LO and L1 (and L2 and L3 if needed) on this new sheet without changing anything
on the sheet underneath, but our “workings out” (temps) are slowly being obscured by our new
jottings on the piece of scrap paper.

And now we need to calculate U and V, so we place another new piece of paper on top of ourZ
work.

And what have we got? A stack of paper!

Havingfinished our UV working out, we can get back to our Z calculations by throwing away the
top-most sheet of paper from our stack — but it’s more than throwing it away, we shred it! So,
make sure to jot any required UV answers down on the scrap piece (temps) first! (And to keep
them safe, copy the temps into locals on our Z sheet.)

Parameters

Our simple code to calculate 75% of a literal is not very useful —we would need a LOT of BHAVs
if we took this approach for any “%X of Y” calculation that we needed. Much better if we could
write a BHAV that did just that, “Calculate X% of Y”.

While that seems trivial, remember that such a calculation may vary depending of the “size” of X
andY -ifYissmall(less than 300), we cando the “times by X divide by 100” approach, but if it’s
larger we need to do the “divide by 10, times by X, divide by 10” approach —and we can encode
that knowledge into the BHAV.

Parameters are data holders that pass values to a BHAV from the calling code, that the BHAV
can then access. Intheory you can have up to 8 parameters, but typically a maximum of 4 are
used. Parameters are commonly referred to as "Param 0", “Param 1”, “Param 2”, etc (or more
succinctly as "P0", “P1”, “P2”, etc). Should you need to pass more than 4 parameters you can
always place the other valuesinto TO thru T7. If you need more than 12 parameters (PO thru P3
and TO thru T7) you should seriously consider restructuring your code!

Like locals, we needto tell SimAntics how many parameterswe need in the BHAV they are used
in, via the “Arg Count” box. (Parameters are also know as ‘arguments’ or ‘args’.)

Filename Sub - Calc %P1 of PO, result in TO Format |0x8007 - | Tree Type 0x00 HeaderFlag 0x00 Tree\Version 0x00000006
0x0 (0): [prim 0x0002] Expression {Temp 0x0000 := Param 0x0000) Arg Count 0Ox02
true: L false: FFFC E EE——

Instruction Settings

0x1 (1): [prim 0x0002] Expressian {Param 0x0000 <= Literal 0x012C)

true: 2 false: 4 OpCode: 0xDO02 P view BHAV No

True Target: False Target

Operands: 00 00 OA 0D OO 07 08 0
E 00 00 00 OO OD 0D 0D 0
[prim 0x0002] Expression {Temp 0x0000 /= Lite

0x2 (2): [prim 0x0002] Expressian {Temp 0x0000 *= Param 0x0001)
true: 3 false: FFFC

0x3 (3): [prim 0x0002] Expression {Temp 0x0000 /= Literal 0x0064)

true: FFFD false: FFFC

0x4 (4): [prim 0x0002] Expression {Temp 0x0000 /= Literal 0x0004)

true: 5 false: FFFC E

0%5 (5): [prim 0x0002] Expression {Temp 0x0000 *= Param 0x0001)

true: 6 false: FFFC E

Ox6 (6): [prim 0x0002] Expression (Temp 0x0000 /= Literal 0x0004) j Move
true: FFFD _ false: FFFC ‘7{5 Add

Sort & 0x0001 lines

Puoalabn

Making the code clearer

Filename Sub - Calc %P1 of PO, resultin TO Format |0x8007 | Tre

0x0 {0): [prim 0x0002] Expression {Temp 0x0000 := Param 0x0000)

true: 1 false: FFFC

0wl (1): [prim 0x0002] Bxpression (Param 0x0000 <= Literal 0x012C)
true: 2 false:

1=

02 (2): [prim 0x0002] Expression {Temp 0x0000 *= Param 0x0001)

true: 3 false: FFFC

03 (3): [prim 0x0002] BExpression (Temp 0x0000 f= Literal 0x0064)

true: FFFD false: FFFC

D¢ (4): [prim 0x0002] Expression {Temp 0x0000 f= Literal 0x0004)
true: 5 false: FFFC

0x5 (5): [prim 0x0002] Bxpression (Temp 0x0000 *= Param 0x0001)
true: & false: FFFC

0x6 (6): [prim 0x0002] Expression (Temp 0x0000 f= Literal 0x0004)

|
=T

true: FFFD false: FFFC

Note that we cannot replace Temp 0 with Local 0, as Local 0 is nhot on our piece of scrap paper
so the calling BHAV could not access the result!

Labels

Parameters and locals can be given labels. And it is good practice to do so. You may be able to
rememberwhat isin P2 and what L4 and L5 are used for in the middle of the BHAV today, butin

3 months you will have forgotten!

To add labels, make sure the “Special buttons” check box is ticked and click the “Labels”
button.

M
ove add

Wiy
Sort i
0x0001 lines Delete @ Specdial buttans

Spedal buttons
Copy Paste Insftrue Insffalse Labels GUIDs
B e e d UL IAST

T - .=l 4

| SN NI JEE [S P ——-

Click “OK” on the “Done!” pop-up, and then click the “TPRP” button.

K

TPRP View Float Extract RFT Help

Tree Type 0x00 HeaderFlag 0x00 TreeVersion 0x0000000& Cache flags 0x00

You can now enter meaningful names for the BHAV’s parameters and locals.

Filename Sub - Calc %P1 of PO, resultin TO

Add Label
Label
Params |ocals
=>
4 Param Label
0x0 () Value
0x1(1) Percentage

Don’t forget to “Commit File”.

Click the BHAV button to switch back to the code.

1 b X
BHAV RFT Help
Version 0x0000004E Commit File

While labels don’t show in the main code flow area,

PISE: Behaviour Function Editor

Filename Sub - Calc %P1 of PO, result in TO Format |0x8007 -

0x (0): [prim 0x0002] Bxpression {Temp 0x0000 := Param 0x0000)

true: 1 false: FFFC [

Faed T4 % Trrimm (aelAATT Cemranmian MMaram AA000 2 — | ikaeal A0 56

they do when the line is selected in the instruction settings area.

Instruction Settings

OpCode: 0Ox0002 | view BHAV ModeVersion: 0x00

True Target: |0Ox0001 ~ | False Target:

COperands: 00 00 00 OO Q0 05 08 09
00 00 00 00 OO0 0D 00 oo ¥ 9 ox
[prim 0x0002] Expression (Temp 0x0000 := Param 0x0000 (Value))

And the parameter labels are also shown when using the wizard to set up the call to the BHAV.

PISE: Instruction Wizard (EXPERIMENTAL) B

Called BHAY: Ox100F: Sub - Cale %P1 of PO, result in TO
Declared Arg Count: w02

Pass as: () Pass Temps () Old-format € New-format

Walue Literal w | 300
Percentage Literal w |65

Unused Literal ~ |0

Unused Literal ~ 0

Parameters Revisited

Exceptina few veryrare and special circumstances, parameters should be treated as read-only
withinthe BHAV. That is, you should never assign a value to a parameter or manipulate one, for
example, by adding one to it. You will forget you did this, and you will assume further onin the
code thatthe parameter hasitsoriginalvalue, and you will create a bug that is very, very hard to
track down! Use a local or a temp - it’s only one more line of code!

Itis NOT possible to use parameters to return values back to the caller. Other than the
true/false return from a BHAYV, only temps can return values directly to the calling code.

Stack Object — A Special Parameter

The Stack Object data holder (commonly referred to as the SO for brevity) behaves as a
parameter. Anyvalue setintothe SO before the callto aBHAV s stillinthe SO withinthat BHAYV,
and like parameters, any changes to the SO are NOT available to the BHAV from which it was
called.

Filename Sub - Set 50 to 0x1234 Format |0x8007 | TreeType 0x00 Hea

0x0 (0): [prim 0x0002] Expression (Temp 0x0000 := Stack Object ID)

M

true: 1 false: FFFC

0x1 {1): [prim 0x0002] Expression {Stack Object ID := Literal 0x1234) :l

true: FFFD false: FFFC FE
Filename Sub - Stack Object Format |0x8007 -~ | Tree Type 0x00 Hei
0x0 {0): [prim 0x0002] Expression (Stack Object ID := Literal 0x8888)

true: 1 false: FFFC E
0x1 {1): [private 0x1011] Sub - Set 50 to 0x1234 () :l

true: 2 false: FFFC E
0x2 (2): [prim 0x0002] Expression (Stack Object ID == Temp 0x0000) :.

true: FFFD false: FFFE +F

“Sub - Stack Object” will return true, as at line 0x2 both TO and SO will have the value 0x8888

You willcome across BHAVs that at line 0x0 loving store the SO into some local and then at the
end copy the local backinto the SO. Thisis completely unnecessary.

Object Attributes

So,if temps can be overwritten at any time by anything, and params and locals only exist within
the BHAV that declares them, and the SO is just weird, how do we store data about an object
long term?

How do we “remember” who ownsthe drivinglicence, if they have passed their test or are still a
learner, and how many penalty points have they accrued?

Enter object attributes (and also object semi-attributes — but those are beyond this “simple”
introduction).

Every object has, by default, eight attributes, but if we need more, we can change the “num
attributes” (Ox003A) entry in the object’s OBJD resource. However, we should be frugal with
attributes, don’tadd “another 20 justin case” as every objectinstance we create from the OBJD
will allocate space forthose “justin case” attributes andthat consumes memory unnecessarily.

We can (and should) label the attributes by adding a STR# resource with instance 0x0100 and
putting the labels for the attributes into the initial strings.

Filename Attributes

String
£
Goto/Add M English ~ M ExportLang Img
[] Reveal defaultlanguage for comparison || Re
English
Ox0000 (0) Cwning Sim MID
0x0001 (1) Lessons Taken
Ox0002 (2) Learner Driver
add 0x0003 (3) Penalty Points
0x0004 (4) Thumbnail GUID La
00005 (5) Thumbnail GUID Hi

Any BHAV can read or change any of the current Stack Object’s attributes. The current Stack
Object is whatever object the value in the SO refers to if it assumed to be an object ID (OID).

Reading the SO’s “Owning Sim NID” attribute in the BHAV “CT — Can Be Put In Personal
Inventory”

PISE: Behaviour Function Editor TPRP View Float Extract RFT Help

Filename CT - Can Be Put In Personal Inventory Format |0x8007 -~ | Tree Type Ox00 HeaderFlag O0x00 Tree Version 0xFFFFE009 Cache flags 0x00

0x0 (0): [prim 0x0002] Expression (Stack Object's attribute 0x0000 == Param 0x0000) Arg Count 0x01 Local Var Count 0x00
true: FFFD false: FFFE ‘7TF —

Instruction Settings

OpCode: 0x0002 P view BHAY NodeVersion: 0x00

True Target: False Target: |ReturnFalse -

Operands: 00 00 00 00 00 02 01 09
00 00 00 00 0D OO 00 00 2 9 x

[prim 0x0002] Expression (Stack Object's attribute 0x0000
{"Owning Sim NID") == Param 0x0000 {Sim NID})

Instruction Settings

m

OpCode: Qx0002 # ¢ BHAY ModeVersion: 0x00

True Target: False Target: |Return False -

Operands: 00 00 00 OO0 0O 02 01 09
00 00 OO 00 OO 00 00 00 ¥ # x

[prim 0x0002] Expression (Stack Object's attribute 0x0000
("Owning Sim MID") == Param 0x0000 (Sim MNID))

Updating the SO’s “Owning Sim NID” attribute from the BHAV “Sub - Set Owner”.

Filename 5ub - Set Owner Format stoog Tree Type 0x00 Header Flag 0x00. Tree Version OxFFFFB010 Cache flags Ox00

0x0 (0): [global 0x0149] Verify - Neighbor ID (Param 0x0000) 5 Commit File Arg Count 0x01 Local Var Count 0x00
true: 1 false: FFFE —
= Instruction Settings
Ox1 (1): [prim 0x0002] Expression (Temp k0000 := Param 0x0000)
true: 2 false: FFFC E OpCode: 0x0002 P view BHAY NodeVersion: 0x00
‘sz (2): [prim 0x0002] Expression (Temp 0x0001 := Literal 0x0000) g TueTooer False Target:
true: 3 false: FFFC -
= = = = Operands: 00 00 00 00 00 05 01 09 ~ance
0x3 (3): [prim 0x0002] Bxpression (Temp 0x0002 := Literal 0x0000) trvers F— E 00 00 00 00 00 00 00 00 K W x
= im 0x0002] Expression (Stack Object's attribute 0x0000
Ox4 (4): [prim 0x006D] Change Material (Stack Object ID, Me ("##0x1C050000!driving-licence-c.."), ([p'éwmng 5|rﬁ]mg = Par(am umnd‘n {Owning Sim NIDY)
source (MeshGroup:[0x0000]), source: Stack Object ID) true: 5 false: FFFE F
0x5 (5): [prim 0x0002] Expression (Stack Object's attribute 0x0004 := Temp 0x0004)
true: false: FFFC E
0x6 (6): [prim 0x0002] Expression (Stack Object's attribute 0x0005 := Temp 0x0005) Move
true: 7 false: FFFC E T Add
- - - = = Sort 0x0001 [ines .
0x7 (7): [prim 0x006D] Change Material (Stack Object ID, Me ("#££0x1C050000!driving-licence-c...”), | Delete @ Special buttons
source (MeshGroup:[0x0000]), source: Stack Object ID) true: 8 false: FFFE F

Special buttons
0x8 (8): [prim 0x0002] Expression (Stack Object’s attribute 0x0000 := Param 0x0000)
true: 8 false: FFFC

0x9 (9): [prim 0x007E] Lua {"BugCollectionRename", Param 0x0000, Stack Object ID, Literal 0x1001)
true: FFFD false: FFFC

E Copy Paste | Insftrue | | Insffalse | | Labels | | GUIDs

Inge's InitLinker Insert unlinked Append BHAV

E Pescado's Delete Delete to end Compare

Instruction Settings

W

OpCode: 0x0002 * view BHE ModeVersion: 0x00

True Target: |0x0009 -~ | False Target:

Operands: 00 00 00 00 00 05 01 09 —ance
00 OO OO0 00 OO 00 00 00 X 9 x

[prim 0x0002] Expression (Stack Object's attribute 0x0000
("Owning Sim MID®) := Param 0x0000 (Owning Sim MID))

